高精密电路板加工

高精密电路板加工
收藏 分享
举报
价格 面议
起批量 ≥ 1件
供应商 深圳市赛孚电路科技有限公司
所在地 广东深圳东莞市长安镇睦邻路7号
陈生

򈊡򈊣򈊦򈊣򈊢򈊨򈊧򈊦򈊢򈊩򈊧 1036958619 򈊠򈊧򈊥򈊥-򈊢򈊧򈊠򈊥򈊥򈊥򈊦򈊩

微信在线

“高精密电路板加工”详细信息

高精密电路板加工

基本参数
联系人
陈生
手机
18938919530
面向地区
产品名称
PCB多层线路板
关键词
PCB多层线路板
微信号
13632876297
价格
面议

PCB线路板高频板与高速板的区别,你知道吗?
PCB线路板是电子产品中不可或缺的重要组成部分,而在不同应用场景中所使用的PCB线路板也具备不同的特点和优点。其中,高频板和高速板是两种特殊的PCB线路板,它们相比于普通的PCB线路板具有特的应用场景和优势。



一、高频板与高速板的定义及特点

高频板
高频板在电子产品中应用广泛,如无线电通信、雷达、卫星通信等领域。一般认为,在工作频率超过500MHz的场合下,就需要使用高频板。

特点在于其在高频工作环境下具备的传输性能。同时,高频板的板厚较薄,线宽、线距也比普通的PCB线路板更为精细。另外,高频板的介电常数特别小,因此可以减少信号损失,提高信号传输速率和接收灵敏度。高频板材一般使用RO4350B、RO4003C、F4B等材料。

高速板
高速板主要应用于计算机主板、工控机、测控仪器等领域。相较于高频板,高速板所涉及的调制解调频率较低,但速率较高,一般是Gbps级别

高速板的特点在于其线路的等长性能更好,在传输高速数字信号时具有更好的信号完整性和抗干扰能力。另外,高速板的板厚一般较厚,可以有效抑制EMI(电磁干扰)。高速板材常使用FR4、PI等材料。
二、高频板与高速板的区别
虽然高频板与高速板都是用于传输信号的PCB线路板,但二者在实际应用中有以下几个方面的区别。

1. 频率范围不同

高频板是在频率超过500MHz的频段使用的,而高速板主要是传输数码信号时使用的,在调制解调频率为几十MHz到GHz级别之间。

2. 线宽、板厚不同

因为高频板需要采用微细线路,因此其线宽、线距比高速板更细,板厚也相对较薄。而高速板的线路等长性较好,因此线宽、线距可以适当加大一些,板厚也可以稍微加厚一些。

3. 材料不同

高频板常使用的材料相较于高速板的介电常数要小一些,以减少信号传输时损失。而高速板常使用的材料通常较一般PCB线路板要好一些,如FR4高TG材料。

三、高频板与高速板的应用场景

1. 高频板的应用场景

在无线电通信、雷达、卫星通信等领域,高频板应用广泛。由于采用了微细线路,可以减少信号损失、提高传输速率和接收灵敏度,因此可在高频的环境下信号的传输和接收的准确性。

2. 高速板的应用场景

在计算机主板、工控机、测控仪器等领域,高速板应用较多。由于其线路的等长性较好,可以在传输高速数字信号时具有更好的信号完整性和抗干扰能力。

高频板和高速板虽然都是用于传输信号的PCB线路板,但它们具备不同的特点和应用场景。在实际选材和应用中,需要结合具体的需求和场景,选择合适的PCB线路板类型,才能确保产品的性能稳定和信号传输的准确性。

PCB线路板铜箔的基本知识
一、铜箔简介


  Copper foil(铜箔):一种阴质性电解材料,沉淀于线路板基底层上的一层薄的、连续的金属箔,它作为PCB的导电体。它容易粘合于绝缘层,接受印刷保护层,腐蚀后形成电路图样。Copper mirror test(铜镜测试):一种助焊剂腐蚀性测试,在玻璃板上使用一种真空沉淀薄膜。



  铜箔由铜加一定比例的其它金属打制而成,铜箔一般有90箔和88箔两种,即为含铜量为90%和88%,尺寸为16*16cm。铜箔是用途广泛的装饰材料。如:宾馆酒店、寺院佛像、金字招牌、瓷砖马赛克、工艺品等。



二、产品特性


  铜箔具有低表面氧气特性,可以附着与各种不同基材,如金属,绝缘材料等,拥有较宽的温度使用范围。主要应用于电磁屏蔽及抗静电,将导电铜箔置于衬底面,结合金属基材,具有优良的导通性,并提供电磁屏蔽的效果。可分为:自粘铜箔、双导铜箔、单导铜箔等。



  电子级铜箔(纯度99.7%以上,厚度5um-105um)是电子工业的基础材料之一电子信息产业快速发展,电子级铜箔的使用量越来越大,产品广泛应用于工业用计算器、通讯设备、QA设备、锂离子蓄电池,民用电视机、录像机、CD播放机、复印机、电话、冷暖空调、汽车用电子部件、游戏机等。国内外市场对电子级铜箔,尤其是电子级铜箔的需求日益增加。有关机构预测,到2015年,中国电子级铜箔国内需求量将达到30万吨,中国将成为世界印刷线路板和铜箔基地的大制造地,电子级铜箔尤其是箔市场看好。



三、铜箔的全球供应状况


  工业用铜箔可常见分为压延铜箔(RA铜箔)与点解铜箔(ED铜箔)两大类,其中压延铜箔具有较好的延展性等特性,是早期软板制程所用的铜箔,而电解铜箔则是具有制造成本较压延铜箔低的优势。由于压延铜箔是软板的重要原物料,所以压延铜箔的特性改良和价格变化对软板产业有一定的影响。



  由于压延铜箔的生产厂商较少,且技术上也掌握在部份厂商手中,因此客户对价格和供应量的掌握度较低,故在不影响产品表现的前提下,用电解铜箔替代压延铜箔是可行的解决方式。但若未来数年因为铜箔本身结构的物理特性将影响蚀刻的因素,在细线化或薄型化的产品中,另外高频产品因电讯考量,压延铜箔的重要性将再次提升。



  生产压延铜箔有两大障碍,资源的障碍和技术的障碍。资源的障碍指的是生产压延铜箔需有铜原料支持,占有资源十分重要。另一方面,技术上的障碍使更多新加入者却步,除了压延技术外,表面处理或是氧化处理上的技术亦是。全球性大厂多半拥有许多技术专利和关键技术Know How,加大进入障碍。若新加入者采后处理生产,又受到大厂的成本拑制,不易成功加入市场,故全球的压延铜箔仍属于强占性的市场。



四、铜箔的发展情况


  铜箔英文为electrodepositedcopperfoil,是覆铜板(CCL)及印制线路板(PCB)制造的重要的材料。在当今电子信息产业高速发展中,电解铜箔被称为:电子产品信号与电力传输、沟通的“神经网络”。2002年起,中国印制线路板的生产值已经越入世界第3位,作为PCB的基板材料——覆铜板也成为世界上第3大生产国。由此也使中国的电解铜箔产业在近几年有了突飞猛进的发展。为了了解、认识世界及中国电解铜箔业发展的过去、现在,及展望未来,据中国环氧树脂行业协会特对它的发展作回顾。



  从电解铜箔业的生产部局及市场发展变化的角度来看,可以将它的发展历程划分为3大发展时期:美国创建初的世界铜箔企业及电解铜箔业起步的时期;日本铜箔企业全面垄断世界市场的时期;世界多极化争夺市场的时期。

PCB线路板贴干膜常见问题及解决方法汇总

随着电子行业的不断发展,产品的不断升级,为了节省板子的空间,很多板子在设计的时候的线都已经非常小了,以前的湿膜已经不能满足现在的图形转移工艺了,现在一般小线都用干膜来生产,那么我们在贴膜过程中有哪些问题呢,下面小编来介绍一下。
  PCB线路板贴干膜常见问题及解决方法汇总
1、干膜与铜箔表面之间出现气泡
(1)不良问题:选择平整的铜箔,是无气泡的关键。

解决方法:增大PCB贴膜压力,板材传递要轻拿轻放。

(2)不良问题:热压辊表面不平,有凹坑和胶膜钻污。

解决方法:定期检查和保护热压辊表面的平整。

(3)不良问题:PCB贴膜温度过高,导致部分接触材料因温差而产生皱皮。

解决方法:降低PCB贴膜温度。

2、干膜在铜箔上贴不牢

(1)不良问题:在处理铜箔表面是没有进行合理的清洁,直接上手操作会留下油污或氧化层。

解决方法:应戴手套进行洗板。

(2)不良问题:干膜溶剂品质不达标或已过期。

解决方法:生产厂家应该选择干膜以及定期检查干膜保质期。

(3)不良问题:传送速度快,PCB贴膜温度低。

解决方法:改变PCB贴膜速度与PCB贴膜温度。

(4)不良问题:加工环境湿度过高,导致干膜粘结时间延长。

解决方法:保持生产环境相对湿度50%。

3、干膜起皱

(1)不良问题:干膜太黏,在操作过程中小心放板。

解决方法:一但出现碰触应该及时进行处理。

(2)不良问题:PCB贴膜前板子太热。

解决方法:板子预热温度不宜太高。

4、余胶

(1)不良问题:干膜质量差。

解决方法:更换干膜。

(2)不良问题:曝光时间太长。

解决方法:对所用的材料有一个了解进行合理的曝光时间。

(3)不良问题:显影液失效。

解决方法:换显影液。

什么是HDI线路板
一.什么是HDI板?
HDI板(High Density Interconnector),即高密度互连板,是使用微盲埋孔技术的一种线路分布密度比较高的电路板。HDI板有内层线路和外层线路,再利用钻孔、孔内金属化等工艺,使各层线路内部实现连结。
二.HDI板与普通pcb的区别
HDI板一般采用积层法制造,积层的次数越多,板件的技术档次越高。普通的HDI板基本上是1次积层,高阶HDI采用2次或以上的积层技术,同时采用叠孔、电镀填孔、激光直接打孔等PCB技术。当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
HDI板的电性能和讯号正确性比传统PCB更高。此外,HDI板对于射频干扰、电磁波干扰、静电释放、热传导等具有更佳的改善。高密度集成(HDI)技术可以使终端产品设计更加小型化,同时满足电子性能和效率的更高标准。
HDI板使用盲孔电镀 再进行二次压合,分一阶、二阶、三阶、四阶、五阶等。一阶的比较简单,流程和工艺都好控制。二阶的主要问题,一是对位问题,二是打孔和镀铜问题。二阶的设计有多种,一种是各阶错开位置,需要连接次邻层时通过导线在中间层连通,做法相当于2个一阶HDI。第二种是,两个一阶的孔重叠,通过叠加方式实现二阶,加工也类似两个一阶,但有很多工艺要点要特别控制,也就是上面所提的。第三种是直接从外层打孔至第3层(或N-2层),工艺与前面有很多不同,打孔的难度也更大。对于三阶的以二阶类推即是。

在PCB打样中,HDI造价较高,故一般的PCB打样厂家都不愿意做。捷多邦可以做别人不愿意做的HDI盲埋PCB板。现阶段,捷多邦采用的HDI技术已突破高层数为20层;盲孔阶数1~4阶;小孔径0.076mm,工艺为激光钻孔.
三.HDI板的优势
这种PCB在突显优势的基础上发展迅速:
1.HDI技术有助于降低PCB成本;
2.HDI技术增加了线密度;
3.HDI技术有利于使用的包装;
4.HDI技术具有更好的电气性能和信号有效性;
5.HDI技术具有更好的可靠性;
6.HDI技术在散热方面更好;
7.HDI技术能够改善RFI(射频干扰)/EMI(电磁干扰)/ESD(静电放电);
8.HDI技术提高了设计效率;
四.HDI板的材料
对HDI PCB材料提出了一些新的要求,包括更好的尺寸稳定性,抗静电移动性和非胶粘剂。HDI PCB的典型材料是RCC(树脂涂层铜)。RCC有三种类型,即聚酰亚胺金属化薄膜,纯聚酰亚胺薄膜,流延聚酰亚胺薄膜。
RCC的优点包括:厚度小,重量轻,柔韧性和易燃性,兼容性特性阻抗和的尺寸稳定性。在HDI多层PCB的过程中,取代传统的粘接片和铜箔作为绝缘介质和导电层的作用,可以通过传统的抑制技术用芯片抑制RCC。然后使用非机械钻孔方法如激光,以便形成微通孔互连。
RCC推动PCB产品从SMT(表面贴装技术)到CSP的发生和发展(芯片级封装),从机械钻孔到激光钻孔,促进PCB微通孔的发展和进步,所有这些都成为RCC的HDI PCB材料。
在实际的PCB中在制造过程中,对于RCC的选择,通常有FR-4标准Tg 140C,FR-4高Tg 170C和FR-4和Rogers组合层压,现在大多使用。随着HDI技术的发展,HDI PCB材料满足更多要求,因此HDI PCB材料的主要趋势应该是:
1.使用无粘合剂的柔性材料的开发和应用;
2.介电层厚度小,偏差小;
3 .LPIC的发展;
4.介电常数越来越小;
5.介电损耗越来越小;
6.焊接稳定性高;
7.严格兼容CTE(热膨胀系数);
五.HDI板制造的应用技术
HDI PCB制造的难点在于微观通过制造,通过金属化和细线。
1.微通孔制造
微通孔制造一直是HDI PCB制造的核心问题。主要有两种钻井方法:
a.对于普通的通孔钻孔,机械钻孔始终是其率和低成本的佳选择。随着机械加工能力的发展,其在微通孔中的应用也在不断发展。
b.有两种类型的激光钻孔:光热消融和光化学消融。前者是指在高能量吸收激光之后加热操作材料以使其熔化并且通过形成的通孔蒸发掉的过程。后者指的是紫外区高能光子和激光长度超过400nm的结果。
有三种类型的激光系统应用于柔性和刚性板,即准分子激光,紫外激光钻孔,CO 2 激光。激光技术不仅适用于钻孔,也适用于切割和成型。甚至一些制造商也通过激光制造HDI。虽然激光钻孔设备成本高,但它们具有更高的精度,稳定的工艺和成熟的技术。激光技术的优势使其成为盲/埋通孔制造中常用的方法。如今,在HDI微通孔中,99%是通过激光钻孔获得的。
2.通过金属化
通孔金属化的大困难是电镀难以达到均匀。对于微通孔的深孔电镀技术,除了使用具有高分散能力的电镀液外,还应及时升级电镀装置上的镀液,这可以通过强力机械搅拌或振动,超声波搅拌,水平喷涂。此外,在电镀前增加通孔壁的湿度。
除了工艺的改进外,HDI的通孔金属化方法也看到了主要技术的改进:化学镀添加剂技术,直接电镀技术等。
3.细线
细线的实现包括传统的图像传输和激光直接成像。传统的图像转移与普通化学蚀刻形成线条的过程相同。
对于激光直接成像,不需要摄影胶片,而图像是通过激光直接在光敏膜上形成的。紫外波灯用于操作,使液体防腐解决方案能够满足高分辨率和简单操作的要求。不需要摄影胶片,以避免因薄膜缺陷造成的不良影响,可以直接连接CAD/CAM,缩短制造周期,使其适用于和多种生产。
六.结尾
硬件工程师刚接触多层PCB的时候,很容易看晕。动辄十层八层的,线路像蜘蛛网一样。
今天画了几张多层PCB电路板内部结构图,用立体图形展示各种叠层结构的PCB图内部架构。

图片高密度互联板的核心在过孔
多层PCB的线路加工,和单层双层没什么区别,大的不同在过孔的工艺上。
线路都是蚀刻出来的,过孔都是钻孔再镀铜出来的,这些做硬件开发的大家都懂,就不赘述了。
多层电路板,通常有通孔板、一阶板、二阶板、二阶叠孔板这几种。更高阶的如三阶板、任意层互联板平时用的非常少,价格贼贵,先不多讨论。
一般情况下,8位单片机产品用2层通孔板;32位单片机级别的智能硬件,使用4层-6层通孔板;Linux和Android级别的智能硬件,使用6层通孔至8一阶HDI板;智能手机这样的紧凑产品,一般用8层一阶到10层2阶电路板。

图片
8层2阶叠孔,高通骁龙624

只有一种过孔,从层打到后一层。不管是外部的线路还是内部的线路,孔都是打穿的,叫做通孔板。

图片

通孔板和层数没关系,平时大家用的2层的都是通孔板,而很多交换机和电路板,做20层,还是通孔的。
用钻头把电路板钻穿,然后在孔里镀铜,形成通路。
这里要注意,通孔内径通常有0.2mm、0.25mm和0.3mm,但一般0.2mm的要比0.3mm的贵不少。因为钻头太细容易断,钻得也慢一些。多耗费的时间和钻头的费用,就体现在电路板价格上升上了。
高密度板的激光孔
图片

这张图是6层1阶HDI板的叠层结构图,表面两层都是激光孔,0.1mm内径。内层是机械孔,相当于一个4层通孔板,外面再覆盖2层。
激光只能打穿玻璃纤维的板材,不能打穿金属的铜。所以外表面打孔不会影响到内部的其他线路。
激光打了孔之后,再去镀铜,就形成了激光过孔。
2阶HDI板 两层激光孔
图片

这张图是一个6层2阶错孔HDI板。平时大家用6层2阶的少,大多是8层2阶起。这里更多层数,跟6层是一样的道理。
所谓2阶,就是有2层激光孔。
所谓错孔,就是两层激光孔是错开的。
为什么要错开呢?因为镀铜镀不满,孔里面是空的,所以不能直接在上面再打孔,要错开一定的距离,再打上一层的空。
6层二阶=4层1阶外面再加2层。
8层二阶=6层1阶外面再加2层。
叠孔板 工艺复杂价格更高
图片

错孔板的两层激光孔重叠在一起。线路会更紧凑。
需要把内层激光孔电镀填平,然后再做外层激光孔。价格比错孔更贵一些。
超贵的任意层互联板 多层激光叠孔
就是每一层都是激光孔,每一层都可以连接在一起。想怎么走线就怎么走线,想怎么打孔就怎么打孔。

PCB板材的Tg值

业界长期以来,Tg值是常见的用来划分FR-4基材的等级指标,通常认为Tg值越高,材料的可靠性越高。

比如下图老wu在南亚上边截取的关于FR-4板材的说明:

Tg135℃,板材用途:主机板、消费类电子产品等

Tg180℃,板材用途:CPU主板,DDR3 内存基板,IC封装用基板等等。

基材对于印刷电路板的作用,就像印刷电路板对于电子器件的作用一样重要。按照PCB的基材按性质可分为有机基板和无机基板两个大的体系。

有机基板由酚醛树脂浸渍的多层纸层或环氧树脂、聚酰亚胺、氰酸酯、BT 树脂等浸渍的无纺布或玻璃布层组成。这些基板的用途取决于 PCB 应用所需的物理特性,如工作温度、频率或机械强度。

无机基板主要包括陶瓷和金属材料,如铝、软铁、铜。这些基板的用途通常取决于散热需要。

我们常用的刚性印制板基板属于有机基板,比如FR-4环氧玻纤布基板,是以环氧树脂作粘合剂,以电子级玻璃纤维布作增强材料的一类基板。

我们看到,FR-4以环氧树脂作为粘合剂,树脂材料有一个重要特性参数:玻璃化转变温度Tg(glass transition temperature),指的是材料从一个相对刚性或“玻璃”状态转变为易变性或软化状态的温度转变点。

玻璃态物质在玻璃态和高弹态之间相互可逆转化的温度。啥意思?就是说FR-4基板的粘合剂环氧树脂若温度低于Tg,这时材料处于刚硬的“玻璃态”。当温度Tg时,材料会呈现类似橡胶般柔软可挠的性质。对!它~变【软】了~ 图片



玻璃态

树脂材料处于温度Tg以下的状态为坚硬的固体即玻璃态。在外力作用下有一定的变形但变形可逆,即外力消失后,其形变也随之消失,是大多数树脂的使用状态。

高弹态

当树脂受热温度超过Tg时,无定形状态的分子链开始运动,树脂进入高弹态。处于这一状态的树脂类似橡胶状态的弹性体,但仍具有可逆的形变性质。

注意,温度超过Tg值后,材料逐渐变软,是逐渐,而且只要树脂没有发生分解,当温度冷却到Tg值以下时,它还是可以变回之前性质相同的刚性状态。

氮素,有个Td值,叫热分解温度,树脂类材料被加热至某一高温点时,树脂体系开始分解。树脂内的化学键开始断裂并伴随有挥发成分溢出,那PCB基材里的树脂就变少了。Td点指的是这个过程开始发生的温度点。Td通常定义为失去原质量5%时对应的分解温度点。但这5%对于多层PCB来说是非常高的了。

我们知道,影响PCB上传输线特性阻抗的因素有,线宽,走线与参考平面间距,板材介电常数等等。而基板材料的树脂量对介电特性有很大的影响,而且树脂挥发后对控制走线与参考平面的间距也有影响。

对于无铅焊接工艺需要考虑这个Td值,比如传统的锡铅焊接工艺温度范围为210~245℃,而无铅焊接工艺温度范围为240~270℃。

下边两个这个截图是老wu在建滔官网上下载的两份板材的参数表做的对比,左边的是FR-4常规系列板材,右边是FR-4无铅板材

常规FR4 板材 KB-6160 Tg值为135℃,5%质量损失Td值为305℃

FR4无铅板材 KB-6168LE Tg值为 185℃,5%质量损失Td值为359℃

我们看到,常规FR4板材的Td值都在300℃以上,而有铅焊接工艺温度范围在240~270℃,Td值完全满足哇,为啥还要搞个无铅版本呢?

正如老wu上边所述,5%的树脂质量挥发率对于需要控制阻抗的多层PCB来说显得太大了,对于锡铅焊接工艺来说,210~245℃的温度材料基本不会出现明显的热分解,而无铅焊接的240~270℃温度区间,对于普通Tg FR-4 基材来说,已经开始损失1.5~3%的树脂质量。虽然不到IPC标准所要求的5%,但这损失的树脂质量也不可忽视。同时,这个分解水平,还可能会影响基材长期的可靠性或导致焊接过程中出现分层或空洞的缺陷,特别是需要多次焊接的过程或存在返修加热的情况。

所以,如果采用无铅焊接工艺的话,除了考虑Tg值,还要考虑Td值。

基板材料的性能在Tg值以上和在Tg值以下时差异很大,不过,Tg值一般被描述为一个非常的温度值,比如Tg135,并不是说温度一超过135℃基板就变得软趴趴,而是当温度接近Tg值开始,材料的物料性能会开始改变,它是一个逐步变化的过程。

树脂体系的Tg值对材料的性能影响主要有两个方面:

热膨胀的影响

树脂体系固化时间

板材受热膨胀,脑补一下画面,SMT焊接时BGA焊盘的间距是不是也就跟着变化了?而且,热膨胀导致的机械应力,会对PCB上的走线和焊盘的连接造成细微的裂纹,这些裂纹可能在PCB生产完毕后的开/短路测试时不会被发现,而在SMT等二次加热后故障就显现出来了,这往往让人很懵逼,而糟糕的情况是,SMT加热时暗病都没出现,在产品出去之后,在冷热交替的使用环境中,板材的受热膨胀让这些细微的裂纹随机性的发生,造成设备故障。

基板材料热性能参数除了标准Tg、Td值,还有热膨胀系数CTE,有X/Y轴方向的CTE也有Z轴方向的CTE。

Z轴的CTE对PCB的可靠性有很重要的影响。由于镀覆孔贯穿PCB的Z轴,所以基材中的热膨胀和收缩会导致镀覆孔扭曲和塑性形变,也会使PCB表面的铜焊盘变形。

而SMT时,X/Y轴的CTE则变得非常重要。特别是采用芯片级封装(CSP)和芯片直接贴装时,CTE的重要性更为,同时,X/Y轴的CTE也会影响覆铜箔层压板或PCB的内层附着力和抗分层能力。特别是采用无铅焊接工艺的PCB来说,每一层中的X/Y轴CTE值就显得尤其重要了。

那么,是不是高Tg值的基材就是好呢?在关于Tg值的许多讨论中,往往认为较高的Tg值总是对基材有利的,但情况也并非总是如此。可以确定的是,对于一种给定的树脂体系,高Tg值基材在受热时的材料高速率膨胀开始时间要相对晚一些,而整体膨胀则与材料的种类有很大关系。低Tg值的基材可能会比高Tg值的基材表现出更小的整体膨胀,这主要与树脂本身的CTE值,或者树脂配方中加入无机填料 降低了基材的CTE有关。

同时还要注意的是,有些低端的FR-4材料,标准Tg值是140℃的基材比标准Tg值是170℃的基材具有更高的热分解温度Td值。如上边老wu所述,Td对于无铅焊接来说是一个很重要的指标,一般建议选择Td数值较大的,而的FR-4往往同时具备高的Tg值和高Td值。

此外,高Tg值的基材往往比低Tg值的基材刚性更大且更脆,这往往会影响PCB制造过程的生产效率,特别是钻孔工序。

比如某创就发帖子说明,随着板子越来越密,过孔与过孔之间的间隙越来越小,对于材料要求越来越高,为此某创将提供TG=155的中TG板材为多层板收费服务!

为啥多收费?

TG=155的板材比TG=135的成本高20%左右,嗯 来料贵了

因为钻孔,中TG用新钻钻咀效果更佳(一般钻咀能磨4次),因为太硬

压合时间:普通TG=135的只需要压合110分钟,而中TG=1 55的压合150分钟

为啥要提供中或高Tg板材,板厂那边说,原因之一是因为高密的过孔,普通TG的过孔间距不能小于12MIL,而中TG不能小于 10MIL,因为板材有玻璃布,在钻孔的时候会有一些拉伤,两个过孔之间你拉一点我拉一点就形成了灯芯效应,而中TG因为硬,板材内的成份不一样,又加上用新钻咀能有效的防范灯芯效应,后续对于难度高的多层板,过孔间间隙太密,某创会强制客选择用中TG板材生产!

原因之二是基板的Tg提高了, 印制板的耐热性、耐潮湿性、耐化学性、耐稳定性等特征都会提高和改善。TG值越高,板材的耐温度性能越好,尤其在无铅喷锡制程中,高Tg应用比较多。

这是从板厂的可制造性方面考虑,而如果是PCB装配采用无铅焊接工艺的话,还需要综合考虑玻璃化转变温度Tg、分解温度Td、热膨胀系数CTE、吸水率、分层时间等等因素。

在高速PCB设计时,设计者应该从那些方面去考虑EMC、EMI的规则呢?



一般EMI/EMC设计时需要同时考虑辐射(radiated)与传导(conducted)两个方面。前者归属于频率较高的部分(>30MHz)后者则是较低频的部分(<30MHz)。所以不能只注意高频而忽略低频的部分。

一个好的EMI/EMC设计一开始布局时就要考虑到器件的位置,PCB叠层的安排,重要联机的走法,器件的选择等,如果这些没有事前有较佳的安排,事后解决则会事倍功半,增加成本。

例如时钟产生器的位置尽量不要靠近对外的连接器,高速信号尽量走内层并注意特性阻抗匹配与参考层的连续以减少反射,器件所推的信号之斜率(slewrate)尽量小以减低高频成分,选择去耦合(decoupling/bypass)电容时注意其频率响应是否符合需求以降低电源层噪声。

另外,注意高频信号电流之回流路径使其回路面积尽量小(也就是回路阻抗loopimpedance尽量小)以减少辐射。还可以用分割地层的方式以控制高频噪声的范围。

适当的选择PCB与外壳的接地点(chassisground)。

联系我时,请说是在黄页88网潍坊多层电路板栏目上看到的,谢谢!

优质潍坊多层电路板信息推荐

留言板

  • PCB多层线路板
  • 价格商品详情商品参数其它
  • 提交留言即代表同意更多商家联系我

深圳市赛孚电路科技有限公司

地址:广东深圳东莞市长安镇睦邻路7号
“高精密电路板加工”信息由发布人自行提供,其真实性、合法性由发布人负责。交易汇款需谨慎,请注意调查核实。
留言询价
×